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Abstract
open-source projects are often reused in commercial
software. Android, a popular mobile operating system,
is a great example that has fostered an ecosystem of
open-source kernels. However, due to the largely
decentralized and fragmented nature, patch propagation
from the upstream through multiple layers to end
devices can be severely delayed. In this paper, we
undertake a thorough investigation of the patch
propagation behaviors in the entire Android kernel
ecosystem. By analyzing the CVEs and patches
available since the inception of the Android security
bulletin, as well as open-source upstream kernels (e.g.,
Linux and AOSP) and hundreds of mostly binary OEM
kernels (e.g., by Samsung), we find that the delays of
patches are largely due to the current patching practices
and the lack of knowledge about which upstream
commits being security-critical. Unfortunately, we find
that the gap between the first publicly available patch
and its final application on end devices is often months
and even years, leaving a large attack window for
experienced hackers to exploit the unpatched
vulnerabilities.

1 Introduction
open-source software is ubiquitous and often serves as
the foundation of our everyday computing needs.
Unfortunately, they also contain a large number of
vulnerabilities — there are new security patches
released weekly for open-source software (e.g., Linux).

It can be tricky to ensure timely delivery of patches
for open-source software because of the widespread
reuse phenomenon where multiple versions or branches
of the open-source software co-exist and can be divided
into so-called upstream and downstream ones.
Downstream developers reuse much of the upstream
software and add finishing touches (e.g., customization,
stability fixes). More importantly, downstream

developers have to take critical security patches from
upstream to eliminate vulnerabilities. This is often
challenging because upstream and downstream branches
are often developed and maintained by different
organizations and companies that often have different
priorities and goals in mind.

The single most prominent example is the Android
ecosystem. The Android open-source Project (AOSP)
kernels are derived from Linux kernels (i.e., reused in
Android) with many features added for mobile devices.
In turn, the AOSP kernels are reused by chipset vendors
such as Qualcomm who add additional
hardware-specific changes. A chipset vendor’s kernel is
then finally reused by OEM vendors such as Samsung
and Xiaomi. This means that the patches can originate
from more than one upstream kernels (e.g., Linux,
AOSP, and Qualcomm), and the propagation can take
multiple steps to finally reach the OEM vendors. Even
though Google has been working diligently with OEM
vendors on patching, e.g., through its monthly update
program [1], the ecosystem is unfortunately so
decentralized that it is beyond the control of a single
entity.

Motivated by the lack of transparency and
understanding of the patching process, we set out to
investigate the unique and complex Android kernel
ecosystem. Specifically, we are interested in the
following high-level aspects:

(1) The relationship between the upstream and
downstream kernels, e.g., who is responsible for the
initial patch, and how does it propagate?

(2) The timeliness of patch propagation, e.g., what is
the typical delay in each step with the patch propagation
and where is the bottleneck?

(3) The factors that influence the patch propagation,
e.g., what are the current best practices by different
entities, and how can we improve the situation?

It is challenging to conduct such a measurement
study. Specifically, even though Android kernels inherit



the open-source license from Linux, kernel sources from
OEM vendors are often released broken/half-baked,
with substantial delays, and only intermittently (e.g.,
when the phone was initially released) [38, 35, 33]. In
contrast, the binary ROMs (i.e., firmware images) are
easier to find. Therefore, to be able to analyze
closed-source Android firmware images, we build a
static analysis tool on top of FIBER [42], a
state-of-the-art tool capable of conducting patch
presence test in binaries.

By analyzing the patches announced in the Android
security bulletin, 20+ OEM phone models, and 600+
kernel images, we delineate many interesting findings
that reveal intriguing relationships among different
parties as well as the bottleneck of the whole patch
propagation process. When fair to do so, we also
compare the responsiveness among different parties,
e.g., which OEM vendors are more diligent in patching
their devices.

We summarize our contributions as follows:
• We investigate the unique Android kernel ecosystem

that is decentralized and fragmented. We mine the
patch propagation delays across all layers and locate
the bottleneck.

• We improve a state-of-the-art source-to-binary patch
presence test tool and develop a system on top of it to
check the closed-source kernels from OEM vendors.
We plan to open-source our system and release the
dataset to improve the transparency of the ecosystem.

• We conduct a large-scale measurement that shows
nearly half of the CVEs are patched on OEM devices
roughly 200 days or more after the initial patch is
publicly committed in the upstream, and 10% – 30%
CVEs are patched after a year or more.

• Furthermore, by mining the commit methods and
correlating them with notification dates published by
Google and Qualcomm, we explain the causes of
patch delays. We also distill takeaways and potential
prescriptive solutions to improve the current situation.

2 Android Kernel Ecosystem

Android is known for its diverse and fragmented
ecosystem where multiple variants of the operating
system co-exist [21]. On one hand, the scale and
diversity of the ecosystem participants definitely
contributed to Android’s overall success. On the other
hand, it is extremely challenging to ensure the
consistency and security of every Android variant out on
the market. It is especially true for Android kernels
which are themselves derived from the upstream Linux
kernel.
Hierarchy of Linux/Android kernels. Figure 1
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Figure 1: Android ecosystem for kernel version 4.4

illustrates the typical relationship between the upstream
and downstream kernels. At the very top, we have the
Linux mainline that moves forward rapidly with all the
features and bug fixes. Its kernel versions are tagged as
4.4, 4.5, etc. Periodically when appropriate, it gets
forked into stable (e.g., 4.3.y) or long term support
(LTS) branches (e.g., 4.4.y) with mostly only bug
fixes [30]. The difference between stable and LTS
branches is that the former is short-lived (a few weeks)
while the latter is supported for a few years. For the
benefit of longer support, Android common kernels
(e.g., 4.4) typically follow the LTS branches.
Meanwhile, Google developers will add the necessary
changes for mobile devices to turn the Linux kernel into
an Android kernel [29]. In addition, the developers will
merge the fixes from Linux to ensure that they stay
up-to-date and bug-free.

In Figure 1, Google’s Android common 4.4 is initially
forked from Linux mainline 4.4 and in the future merges
all the changes from Linux LTS 4.4.y. Then there are
branches maintained by SoC vendors such as
Qualcomm, MediaTek, and Exynos (out of which only
Qualcomm provides the complete history in git repos).
Take Qualcomm as an example, when the company
decides to ship a new SoC like Snapdragon 830, it may
choose to fork a then-recent Android common 4.4.y. In
fact, there exists a generic 4.4.y branch and multiple
chipset-specific branches all maintained by Qualcomm
(simplified in Figure 1). Interestingly, sometimes
Qualcomm may choose to fork directly from upstream
Linux (e.g., 4.9.y) instead of Android common.
Nevertheless, it will still merge significant changes from
Android common later on. According to our analysis,
SoC vendors typically take fixes and security patches
from its direct upstream, Android common, instead of
Linux. This practice is reasonable as Google has already
done a significant amount of work for the SoC vendors
such as patch compatibility tests for Android kernels.
However, this also increases the patch propagation delay
due to the extra hop.



Finally, at the very bottom of the hierarchy is the
OEM vendor kernel. Depending on the device model
and its chipset, e.g., a Xiaomi phone using Snapdragon
835, the corresponding branch from the SoC vendor will
be forked (Qualcomm’s 4.4.y). The OEM vendor may
then optionally add new features (e.g., Samsung’s kernel
hardening [39]) or simply only port bug fixes from the
upstream (for smaller OEM vendors). However, when it
comes to security patches, OEM vendors tend to have a
tighter connection with Google who monthly updates its
Android security bulletin since 2015. According to our
knowledge, Google serves as the main point of contact
notifying OEM vendors about various security
vulnerabilities even though the original patch may come
from other parties (e.g., Linux or Qualcomm). From Sep
2017, Qualcomm has also established its own security
bulletin and independently notifies its customers about
Qualcomm-specific vulnerabilities [18, 37], which
overlap with the ones on the Android security bulletin.
Android security bulletin is a central location where
Google publishes monthly updates on Android security
patches and their corresponding CVEs [1]. For the
CVEs affecting the open-source Android components
(for kernels, most are open-sourced except some
proprietary drivers, e.g., by MediaTek), there will be
links to the upstream kernel commits representing the
patches of the vulnerabilities.

It is worth noting that as Android kernels can be
customized by individual OEM vendors, the bulletin
may not cover OEM-specific vulnerabilities (e.g., an
OEM device may use a custom file system).
Nevertheless, it represents Google’s best effort to keep
track of vulnerabilities that affect the Android common
kernel, the upstream Linux kernel, and SOC vendors
(primarily Qualcomm). In fact, each CVE has a
corresponding link to its patch (i.e., a git commit) that
belongs to one of the three kernel repositories.

Before publicizing the vulnerabilities on the Android
security bulletin, Google notifies OEM vendors at least
one month earlier to ensure that affected devices are
patched [2]. In other words, the publication of
vulnerabilities on the Android security bulletin
represents a major event in the patch management cycle,
after which unpatched devices will be in danger. Indeed,
our measurement results suggest that OEM vendors are
dependent on Google for patching.

3 Measurement Goal and Pipeline

As alluded to earlier, the goal of the measurement is to
shed light on the patch propagation in the fragmented
Android kernel ecosystem. In this paper, we explicitly
assume the knowledge of the affected function(s) and
the source-level patch itself, as the upstream

Linux/Android kernels do offer detailed patch commits.
As a result, our goal is that given a CVE, we will track
the propagation of the initial patch along the chain of
upstream-downstream kernels. Together with the CVE
publication time on the Android security bulletin, we
can paint a timeline of patch commit and announcement
events in the whole patch management cycle.

Before we introduce the measurement pipeline, we
first introduce the three different types of kernels that
are publicly accessible, with increasing degrees of
difficulties to analyze.

(1) Type 1: Repository. Kernels made available
through git repositories contain complete commit
history. They represent the easiest case to analyze as a
security patch can be easily located in the commit log
— typically they simply copy the commit message
and/or reference the commit given in the Android
security bulletin’s link. Linux, Android common,
Qualcomm and Nexus/Pixel kernels belong to this
category. Unfortunately, other SoC vendors such as
Samsung Exynos, MediaTek, and Huawei Kirin do not
offer git repositories corresponding their recent chipsets.

(2) Type 2: Source code snapshots. Most OEM
vendors prefer to release their kernels in the form of
source code snapshots without commit history
(Google’s own Nexus/Pixel phones are exceptions). It is
usually possible to check if a particular CVE is patched
in the snapshot via simple source-level function
comparison (more details in §4.2). The issue though, is
that such snapshots are released with substantial delays
and often sporadically, leading to missing data points
and inconclusive results.

(3) Type 3: Binary. The most available form of OEM
kernels is the binary one – firmware images or ROMs.
In fact, there is an abundant supply of Android ROMs
on both first-party [9, 10] and third-party websites [7, 8].
These ROMs represent a valuable data source for patch
propagation analysis, as long as we can accurately test
patch presence in these binaries.

Measurement pipeline. Now we introduce the
measurement pipeline (Figure 2) that integrates the
analysis of the above three kernel types:

(1) Crawler. Initially, we crawl the kernel-related CVE
information from Google’s Android security bulletin [1].
This includes CVE numbers, specific patch commits, and
the corresponding repositories in which the patches were
committed.

(2) Patch locator. This is to analyze type 1 target
kernels (i.e., repositories). It attempts to determine if a
given patch (or a similar one) exists in a target kernel
repository (§4.1). If so, it outputs the corresponding
patch commit in the repository, which then also serves
as the reference in the patch presence test for type 2 and
type 3 kernels.
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Figure 2: Measurement pipeline.

(3) Patch evolution tracker. The tracker tries to collect
all possible versions of a patched function (i.e., the
function can continue evolving after the security patch)
in the repositories, this can help us reliably test the
patch presence in both type 2 (i.e., source snapshot) and
type 3 (i.e., binary) kernels.

(4) Source-level matcher. It tries to match each
patched function version (identified by the evolution
tracker) to the target function in a type 2 kernel, in order
to perform a source-level patch presence test (§4.2).

(5) E-FIBER. E-FIBER is capable of translating each
patched function version into a binary signature and then
matching the signature in type 3 binary kernel as a patch
presence test. We build E-FIBER on top of FIBER [42],
a state-of-the-art binary patch presence test system. We
will articulate the improvements we made over FIBER in
§4.3.

4 Patch Presence Test
In this section we will detail the methodology of patch
presence tests against the three kernel types.

To better facilitate the discussion of this paper, we
call the patch linked in Android security bulletin the
“linked upstream patch”, which can only be in type 1
kernels (repositories), i.e., Linux, Android commons,
Qualcomm. Interestingly, later we find that these may
not be the earliest patches.

4.1 Repository Target

When our target is a repository, we search through the
commit history using the patch locator to test the
presence of an equivalent patch.

Patch locator: We combine various information
about the original patch to determine its presence in the

target repository. Specifically, we have the following
procedure:

1) For each commit, we attempt to perform a simple
string match on the commit subject. If it is a patch they
borrow from the upstream, the downstream kernels
typically retain the original subject. If there are multiple
hits, we use the commit message to identify the real
match. Typically, the downstream kernels will not only
copy the original commit message but also reference the
upstream commit, e.g., cherry picked from commit

XYZ. If no results are found, we perform the second step.
2) When commit subject and message are not retained

when applying the same patch in downstream, we
search through the commit history of the corresponding
patched file, attempting to match the complete source
level changes (including both the added/removed lines
as well as the context lines) with those in the original
patch. If still no match, we move to the next step.

3) It is possible that the downstream kernel has
customized the patched function and its context lines no
longer match those in the original patch. We therefore
also attempt to match the added and deleted lines only
(ignoring the context lines). However, if still no results
are found, we keep the commits that matched with at
least some blocks of added lines (which we call “change
sites”) in the original patch.

In any of the above steps, if there are multiple results
returned, we manually identify the correct one by
inspecting the commit message (note that the message is
no longer exactly copied else the first step would have
caught it). In addition, if no match is ever found after all
the steps, we attempt a manual search using parts of the
message of the original commit as a last resort. Only if
this step fails to locate any commit will we determine
the commit is missing. In practice, we find these cases
that require manual analysis are small (6.8% in our



experiments).
In addition, there are several special cases we need to

pay attention to:
(1) File path/name change: If we cannot find any

commits that change the patched file, we extend the
search region to files that have the same name but in
different directories (sometimes the downstream kernel
would decide to rearrange certain source files). If we
find any commit that renamed the patched file at some
points, we also track the evolution of the renamed file.

(2) Function name change: similar to file names, the
name of a function may also change over time. We
develop a small script to track the evolution of them too
by checking the related commits.

(3) Patched at initialization time: sometimes a kernel
repository or branch may choose to copy the entirety of
a source file and commit it as a brand new file. In that
case, we lose the actual commit that applied the patch.
However, we can still match the change sites given in the
original patch.

Finally, we note that there can be several reasons when
a patch is not found: 1) the patched file/function simply
doesn’t exist in this branch (e.g., a vulnerable Qualcomm
driver is not used in Huawei devices), 2) the vulnerability
does not affect the particular branch/repository, 3) The
vulnerability fails to be patched. In our evaluation, we
consider a CVE not applicable for a particular target if it
falls under case 1).

4.2 Source Code Target
For kernel source snapshots, we need a way to check its
source code against the patched version and infer the
patch presence. A naive approach is to match the
patched function from upstream against the same
function in the snapshot. However, there can be multiple
versions of the patched functions (i.e., due to further
commits to the same functions), and we do not know
which version the target may take (regardless of whether
it is source code or binary target). Even worse, the
patched function name or patched file may change
altogether as mentioned previously.

Our solution to this problem is straightforward. In
addition to the single version of a patched function, we
choose multiple versions of the patched function to
represent the patch of a vulnerability. In general, we
have two criteria to select the versions we should
consider:

(1) Complete. We should be able to discover all
patched versions of a function — unless the version is
internal to the OEM and not visible in the upstream
kernel repositories due to vendor-customization.

(2) Unique. The patched version should not occur in
the unpatched version of the kernel. Otherwise, it no
longer can distinguish the patched and unpatched cases.

Patch evolution tracker: In order to generate a
complete set of patched function versions, we need to
pick one or more reference kernels first where we can
track the evolution of a function post-patch — this
means that we must use kernel repositories with commit
history as reference kernels.

In this paper, we choose the repositories from
Qualcomm as our reference kernels. This is because
Qualcomm has the largest market share as a chipset
vendor and therefore is the direct upstream of most
Android devices. If a bug is fixed in Linux or Android
common kernels, they should also exist in Qualcomm;
in other words, Qualcomm has a superset of patches.

Qualcomm maintains different repositories for several
major kernel versions (e.g., 4.4 and 4.9). Within each
repo, there is typically a “general release branch”
(which we simply refer to as mainline) and multiple
“stabilization branches” (which we refer to as stable)
exist [16]. A stable branch usually corresponds to
specific chipsets and OS versions (e.g., Android 8.0)
and only port fixes from the mainline. For example,
branch kernel.lnx.4.4.r34-rel in repo msm-4.4

has tags sharing a prefix of LA.UM.7.2.r1 which
corresponds to snapdragon 660 and Android 9.0 [17].

As any OEM kernel either forks from or follows a
corresponding Qualcomm stable branch (which
determines the chipset) and Qualcomm repo (which
determines the kernel version), we choose the reference
repo according to its kernel version. In practice, this
minimizes the differences between the two and
improves the accuracy of the patch presence test.

After choosing repositories, we need to determine in
which branches to track the patched functions. In
principle, we could choose all the branches (including
mainline and stabilization) but it may be unnecessary
and time-consuming. Instead, we choose the mainline
branch only for the following reasons: 1) Generally,
vulnerabilities are patched in the mainline first and then
propagated to the chipset-specific branches. Due to
delays, the patch may not even exist in a chipset-specific
branch but we cannot rule the vulnerability out. 2) We
prefer to generate generic signatures which are not
overly-specific; otherwise there may be too many
signatures to generate in the end. In §5, we will show
that this strategy produces satisfactory accuracy.

Source-level matcher After collecting the different
versions of the patched functions in the corresponding
repository, e.g., Qualcomm 4.4, we need to compare
them against the function in the target kernel. There are
several ways to do so, e.g., hash-based methods [15], a
straightforward string match of a few representative
lines (e.g., changes made in the patch) in the function,
or even a simple string match of the whole function.

We decide to use the most strict and simplest method
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— strict string matching of the whole patched function
(using all the evolved versions post-patch) after stripped
trailing white spaces for the following reasons: 1) It is
strict and never produces any false positive, i.e., if we
claim that a function is patched, it must match some
version of the patched function (and not any unpatched
version). 2) The method is simple and easy to reason
about. While it does produce false negatives, e.g., the
target kernel may customize the patched function so that
it looks different but still patched, we find that these
cases are uncommon and we are able to manually
analyze them (given that we have the target kernel
source).

4.3 Binary Target
If the target is a binary, neither of the previous two
methods works. The key challenge is that the patched
functions at the binary level are unlikely to be identical
even if their sources are the same. This is because of
various kernel and compiler options that can influence
the compiled binary instructions. Therefore, we choose
to generate binary signatures (in the patched function) to
test the presence of patch in the target. The signature is
what represents the semantics of a patch.

Specifically, we build an improved version of FIBER
whose original workflow is illustrated in Figure 3.
There are three main steps: 1) it first analyzes a patch
(i.e., changes made in one or more places) and checks
the uniqueness of each change site. Then it picks a few
suitable change sites for signature generation. 2) FIBER
compiles the kernel and extracts relevant sequences of
instructions (and even symbolic formulas involving the
computation of variables) representing the semantics of
these change sites. 3) FIBER matches the signatures
against a target binary.

Unfortunately, there are several limitations
acknowledged and summarized in the original paper: 1)
Function inline. (2) Function prototype change (3) Code
customization. (4) Patch adaptation. (5) Other
engineering issues. We observe that several of these
issues share a common root cause: patched functions
evolve over time and FIBER picks only the initial
version of the patched function for signature generation.

This means that if the release date of the target kernel
and the original patch differ significantly, the generated
signature is likely out-of-date for the target kernel. In
our preliminary evaluation of FIBER spanning 3 years
of reference and target kernels, we find that its accuracy
dropped considerably compared to what was reported in
[42] due to this issue.

To overcome this limitation, we simply leverage the
patch evolution tracker (proposed earlier) to identify the
multiple versions of the patched functions so that a more
complete set of signatures can be generated. This is
especially important when the change sites of the
original patch are completely erased during the
evolution of the patched function.

In addition, we also address two other technical
problems mentioned earlier: (1) the patched function
becomes inlined, and (2) the binary signatures look
different for the same source due to different compilers
and configuration options (FIBER has some degree of
robustness but can still be affected as discovered in our
preliminary analysis).

Function inlining can cause a direct failure in locating
the patched function in the reference binary (missing
from the symbol table) and therefore failure in
generating the signature.

Our solution is as follows: we try to find the caller of
the patched function which should contain the inlined
version of the patched function. If the caller is also
inlined, then we will recursively locate the caller of the
caller until one is found in the symbol table. Since the
reference kernels are compiled by E-FIBER, we can
make use of debug information to locate the exact
sequence of instructions that belongs to the patched
function (which is inlined), and generate the signatures
(which are now in the context of a caller) accordingly.
This signature can then be matched in the target kernel
which has the same inlined behavior.

To address the compiler and configuration issues. We
vary these configurations ahead of time in generating the
binary signature.

(1) Compilers. Most vendors use GCC to compile
their source code, however, a few new devices released
in 2019 (whose corresponding Linux versions are 4.14)
use Clang. Different compilers can yield vastly different
binary instruction sequences to the point it becomes
hard to semantically test the equivalence of the two. As
a result, we use both compilers to compile 4.14
reference kernels and generate two versions of
signatures.

(2) Optimization levels. Through sampling a few
kernel source snapshots from major OEM vendors, we
find that all of them use either Os or O2 as the compiler
optimization levels. We, therefore, generate signatures
with both optimization levels.



Type of target Company Repo (Num of branches) or Phone models (Num of Roms)

Repository

Linux Linux(mainline, linux-3.18.y, linux-4.4.y, linux-4.4.y, linux-4.14.y)
AOSP common Android common(android-3.18, android-4.4, android-4.9, android-4.14)
Qualcomm msm-3.18(8), msm-4.4(17), msm-4.9(15), msm-4.14(1)
Pixel Android msm (Pixe l, Pixel 2, Pixel 3)

Binary

Samsung
Galaxy S7(78), Galaxy S8(52), Galaxy S9(32),
Galaxy Note9(28), Galaxy A9 Star(11), Galaxy A8s(9)

Xiaomi
Mi 6(84), Mi8 Lite(24), Mi 8(12), Redmi 4(41),
Redmi 4pro(38), Redmi Note7(21), Mi Max2(75)

Huawei Mate 10(37), P20 pro(31), Honor10(30)
Oppo R11s(11)
LG V30(10)
Oneplus Oneplus5(27), Oneplus6(18)

Source snapshot

Sony XperiaXZ1(23)
Samsung Galaxy S8(1), Galaxy S9(1)
Xiaomi Mi 8(1), Mi 9(1), Mi Max2(1), Redmi Note7(1)
Huawei Mate 10(1), P20 pro(1)
Oppo FindX(1)

Table 1: Dataset of measurements

repository Num. CVEs
1 Linux 141
2 Qualcomm msm-3.4 12
3 Qualcomm msm-3.10 52
4 Qualcomm msm-3.18 115
5 Qualcomm msm-4.4 63
6 Qualcomm msm-4.9 15
7 AOSP msm 2

Table 2: Corresponding repository of CVE in Android
security bulletin

(3) Configuration files. Besides optimization levels,
other kernel configuration options (to enable and disable
certain kernel components) vary. In the mainline branch
of Qualcomm repos (e.g., 4.4 or 4.9), there are typically
a few config files. For example, msm-4.9 has 16 config
files in total and only 8 of them are specific to Android
chipsets, including sdm845-perf defconfig

(Snapdragon 845), msm8937-perf defconfig

(Snapdragon 430), etc. We pick only the config files that
are relevant to the Android devices we are interested in
testing. For example, snapdragon 845 is used in Mi 8.
Thus sdm845-perf defconfig is used to generate the
corresponding signatures.

5 Evaluation
5.1 Dataset
Overall, we collected 402 kernel CVEs released on
Android Security Bulletin every month since its
inception in Aug 2015 until May 2019. This includes

the main bulletin [1] as well as a Pixel bulletin [5]. We
summarize the crawled CVEs in Table 2. Clearly, most
of them link to Linux and Qualcomm instead of AOSP
Android repositories.

We also summarize the target kernels used in our
evaluation in Table 1. Overall, we collected 3 levels of
upstream kernels as introduced before, i.e., Linux,
Android common and Qualcomm. 8 most popular
Android brands (Google Pixel, Samsung, Xiaomi,
Huawei, Oppo, OnePlus, Sony, LG), covering 26 phone
models and 701 released kernel instances (either source
or binary). For most phone models, the kernel instances
cover a time range of one to two years. We collect these
kernels through both official and third-party websites.
Our experience is that most official websites supply
only the latest ROM for each phone model, and
occasional source snapshots. The one exception is that
SONY offers all source code snapshots on its websites.
To obtain historical versions of ROMs, we rely mostly
on third-party websites [11, 12, 7, 8].

We extract compilation dates (i.e., build dates) from
these ROMs which are used to compare against various
dates such as Android security bulletin release date and
patch dates on the upstream. Note that we collect many
historical kernel versions (e.g., 78 versions for Samsung
Galaxy S7) for the same phone model in order to conduct
a longitudinal study on their patching behavior.

To generate robust signatures using E-FIBER (see
§4.2 and §4.3), we have used in total 19 different config
files from msm-3.18, msm-4.4, msm-4.9, and msm-4.14
Qualcomm repos that represent the chipsets encountered
in our OEM devices. We use two compiler optimization



Device Kernel
Version

Source code Binary
Cnt. TP TN FP FN Accuracy Cnt TP TN FP FN Accuracy

Samsung S8 4.4.78 351 257 59 0 35 90.03% 246 202 37 0 7 97.15%
Samsung S9 4.9.112 302 293 3 0 6 98.01% 189 180 2 0 7 96.30%
Xiaomi Mi8 4.9.65 232 208 23 0 1 99.57% 168 149 15 0 4 97.62%
Xiaomi Mi9 4.14.83 262 258 3 0 1 99.62% 173 165 1 0 7 95.95%
Redmi Note7 4.4.153 356 342 13 0 1 99.72% 265 255 7 0 3 98.87%
Xiaomi Max2 3.18.31 328 217 88 0 23 92.98% 208 155 45 2 6 96.15%
Huawei P20 4.9.97 137 114 12 0 11 91.97% 83 76 5 0 2 97.59%

Huawei Mate10 4.4.23 147 74 67 0 6 95.92% 86 53 26 2 5 91.86%
Oppo FindX 4.9.65 235 210 19 0 6 97.45% 186 171 12 0 3 98.39%

Table 3: Accuracy of patch presence test

settings: -Os and -O2. We also need to account for patch
evolution. In the end, we compiled a total of 2,488
reference kernels all from Qualcomm repos with 11,093
signatures generated in the end (note one compilation
allows multiple signatures to be generated).

5.2 Accuracy
In this section, we will describe the accuracy of patch
presence test against three types of kernel targets
presented in §4.

First of all, for kernels that are in the repository form,
since we have conducted both automated and manual
analysis (for the few subtle cases) exhaustively on every
CVE and every branch, we treat the results as ground
truth.

For kernels that are in source snapshots or binary
ROMs, we sample a number of them to evaluate the
accuracy of the patch presence test at both the source
and binary level. Specifically, we picked 9 kernels, each
from a different phone model covering 4 different
brands. These 9 kernels are available in both source
snapshot and binary, which allows us to verify the
results of binary patch presence test using the
corresponding source code. The results are summarized
in Table 3. Generally, our solution works well for both
source and binary targets with an average accuracy of
more than 96%. To give more details, we also analyzed
the sources of inaccuracies.

In the case of source snapshot targets, since we
consider a function patched only when a strict string
match of the full function is found, it leads to no false
positives but some false negatives are observed, which
are due to customization of the patched functions. The
results suggest that Huawei and Samsung have more
customization than others. This is consistent with the
fact that Samsung and Huawei are the top 2 players in
the Android market and have the strongest product
differentiation.

In the case of binary targets, the inaccuracies come

from 1) Customization of the patched function. 2) Even
when source code is the same, the binaries may look
different due to vendor customization of compiler’s
config options, which we do not have complete access
to (other than those from the periodic source snapshots).
Interestingly, we can see generally comparable and even
lower false negative rates compared to the source
snapshot targets. This is because the source-level patch
presence test is based on strict string matching of the
whole patched function (and will fail to match any
vendor customized functions). On the other hand,
FIBER by design has some resistance against
customization as the generated signatures only
characterize a small (but key) portion of the patched
function.

Besides, the number of CVEs and their corresponding
patches that we can track for binary kernel targets is
smaller. One common reason is that many vulnerable
drivers are included in the source snapshot but are not
compiled into the binaries. Other technical reasons are:
1) FIBER was not able to generate signatures for certain
cases. 2) Generation/Matching of signatures costs too
much time (over a threshold of 2 hours, which is
determined by the distribution of time consuming we
observed). These cases attribute to about 10% of the
CVEs and were excluded from the binary patch
presence test.

Overall, the patch presence test accuracy result gives
us confidence in the measurement study in §5.4. We also
note that patch presence test in upstream source repos is
independently done through patch locator as described in
§4.1.

5.3 Patch Propagation in Upstream
kernels

In this section, we focus on analyzing the patch
propagation in the upstream kernel repos using the patch
locator described in §4.1. With the exact time and date
of individual commits, we are able to track the patch
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propagation precisely and make a number of interesting
observations about both Linux and Qualcomm
vulnerabilities.

Figure 4 gives an overview of the cumulative patch
delays observed at each layer with respect to Linux
mainline (here all included CVEs affect Linux). As we
can see, Linux internally (mainline → LTS) already has
a substantial delay, with 20% of the patches being 100
days or longer. On the other hand, Google does a good
job in tracking Linux vulnerabilities, as the line
representing the Android common’s patch delays is
closely aligned with that of Linux LTS. Qualcomm’s
mainline is noticeably slower in picking up patches
from its upstream (note the log-scale nature of the
X-axis). Finally, we find that Qualcomm can be
considered the bottleneck as it is extremely slow in
propagating most of its patches from mainline to stable
branches. For about half of the cases, the
Qualcomm-internal propagation delay is at least 2 to 3
months. From the end-to-end point of view, the majority
of patches take over 100 days for them to propagate
from Linux mainline all the way to Qualcomm stable.
About 15% of the patches took 300 or more.

If we break the result down further layer by layer,
Figure 5 shows the delay incurred in Linux internally
(mainline → LTS) across all four major kernel versions

3.18, 4.4, 4.9 and 4.14. We see 5% to 25% of patches
experience a delay of 100 days or longer (with 3.18
being the worst). In extreme cases, after patched in
Linux mainline, CVE-2017-15868 is not patched in
Linux LTS 3.18 until 954 days later. Not too long ago, a
critical vulnerability CVE-2019-2215 was not patched
in Linux LTS 4.4 until about 600 days later, ultimately
leaving most downstream OEM kernels such as Pixel2
and Samsung S8/S9 vulnerable [25].

The case for Linux LTS → Android common
(Figure 6) is different and interesting. The delays are
much smaller where more than half of the CVEs are
patched in Android common the same day as Linux LTS
or earlier. When we look into the reason, we find that
the maintainer of Linux LTS, Greg Kroah-Hartman, also
helps maintain the Android common repository (note
the large fraction of 0-day delay cases). After merging
commits from mainline to LTS, he usually merges
commits from LTS to Android common repository right
away. The other thing worth noting is that about 10% –
20% of the patches are applied in Android common first
and then appear in LTS, exhibiting negative delays. This
is because Google has been diligently scouting for
important security patches everywhere, sometimes
picking up patches from Linux mainline directly and
bypassing the slow Linux LTS. Google is capable of



doing this because (1) they hire many engineers who are
also Linux maintainers, and (2) Google offers a bug
bounty program and thus many Linux bugs are reported
to Google first who typically tries to get Linux mainline
to patch first and then port it immediately (according to
the feedback we received from Google).

The case for Android common → Qualcomm
mainline (shown in Figure 7) is similar in the sense that
also about 5% – 20% of the patches are observed in
Qualcomm first and then Android common. Similar to
Google, Qualcomm also independently ports patches
from Linux mainline. Interestingly, this means that even
after Google picked up patches from Linux mainline
directly, there are additional mainline patches missed by
Google which are picked up by Qualcomm directly.

The last step in the pipeline is about the Qualcomm
mainline branch (e.g., 3.18) to its corresponding stable.
As shown in Figure 8, we pick three representative
stable branches that correspond to the Android devices
and OS versions we will analyze (recall that stable
branches are specific to chipsets and Android OS
versions). We note that other branches yield similar
results (except those ones with insufficient history). We
excluded all 4.14 stable branches because they are too
new to have sufficient history. Overall, we can see that
the delay is very substantial compared to the earlier
steps. For 4.4, about 80% of the patches are delayed for
100 days or longer and 20% delayed for 200 days or
longer. 4.9 is somewhat better than 4.4 with 80% of the
patches delayed for 60 days or longer. Both are far
worse than the internal delays in Linux (Figure 5).
Interestingly, the 3.18 stable branch shows a comparable
delay to 4.4 (and even slightly better) — a sharp
contrast with the previous step that the Qualcomm 3.18
mainline being the slowest among all other mainlines
(shown in Figure 7). Upon closer inspection, this is due
to an older patching practice for the Qualcomm 3.18
repo which we will discuss in detail in §6.

In summary, for vulnerabilities that originate in
Linux, we pinpoint the internal propagation delays
within Qualcomm and Linux (i.e., mainline to
stable/LTS) to be clear bottlenecks. In addition, we find
that newer kernel versions (from 3.18 to 4.14) generally
correspond to more timely patch propagation across all
these layers. The improvement however appears to have
stabilized since 4.9.

Finally, we also inspect vulnerabilities that originate
in Qualcomm — they constitute more than 60% of the
CVEs as shown in Table 2. Surprisingly, as shown in
Figure 9, the patch delays seem abnormally small
compared to the Linux vulnerabilities (Figure 8). We
suspect this is because Qualcomm is much more aware
of the vulnerabilities specific to its own code, i.e.,
triaged and analyzed internally, and thus can react faster.

We will provide more evidence to support this in §6.

5.4 Patch propagation to Android OEM
phones

In this section, we follow the patch propagation pipeline
to OEM vendors using a variety of Android devices as
described in §5.1. We are primarily interested in
measuring the patch delay and understanding generally
whether OEM delays represent the bottleneck in the
end-to-end patch propagation. In addition, these
Android devices are produced and maintained by
different companies, marketed as high-end or low-end
phones, and released in diverse geographic regions. We
therefore also examine how these factors may influence
the patching behavior. For most phones, we are able to
retrieve a continuous stream of firmware images (one
image per month according to build dates). Thus we can
pinpoint when a patch is applied.

Figure 10 shows the patch propagation delay from
Qualcomm stable to OEM phones (aggregated over all
the phones). For every OEM phone, we pick one or
more corresponding Qualcomm stable branches as
upstream with the matching chipset and Android OS
versions (note a phone may upgrade its Android OS
version during its lifetime). As we can see, for
Qualcomm-specific vulnerabilities (in dotted lines),
OEM phones fall behind Qualcomm stable significantly
— the delay is 100 days or more for 70 - 90% of CVEs.
On the other hand, for vulnerabilities that originated in
Linux, we find that the delays are noticeably smaller.
This is due to Linux vulnerabilities being patched much
earlier in upstream (Linux and Google’s Android
common) and therefore OEM vendors do not
necessarily need to wait for patches to propagate to
Qualcomm stable. For example, they could be notified
by Google earlier.

Next, we also plot the end-to-end delay in Figure 11
by adding up delays in each propagation layer in the
whole ecosystem. Here the earliest patch is either Linux
mainline or Qualcomm, depending on whether the
vulnerability is originated from Linux or Qualcomm.
Generally, both cases incur significant delays with
Linux vulnerabilities being generally worse. This is
understandable because a Linux patch naturally has a
longer propagation chain compared to a Qualcomm
patch. As we can see, more than half of the Linux CVEs
are delayed for 200 days or more, and 10% to 30% of
CVEs are delayed for more than a year. This is an
unacceptably long delay that allows experienced
hackers to craft exploits against unpatched OEM
devices. CVE-2019-2215 is one such example [24].

Next, we analyze a number of factors that might influ-
ence the patch delays in OEM phones.
• Vulnerability severity. Intuitively, more severe
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vulnerabilities should be patched sooner rather than
later by OEM vendors (or upstream). However, as
shown in Figure 12, the result is not supportive.
Specifically, we plot the distribution of end-to-end patch
propagation delays by vulnerability severity levels. In
§6, we will offer a much more detailed explanation of
the phenomenon (after reaching out to Google). Note
that there are only 33 critical CVEs from the security
bulletin, and 30 of them are very old (originally patched
before 2017) not applicable to many of the new OEM
devices. Thus we combine them with high severity
CVEs.
• Name brand. To do a fair comparison, we sample 8
phones from 8 first-tier companies which are all
high-end and released in 2017: Google Pixel2, Samsung
S8, Xiaomi Mi 6, Huawei Mate 10, Oneplus 5, Oppo
R11s, SONY Xperia XZ1 and LG V30. Their
corresponding kernel versions are also the same —
4.4.y. We only compare the CVEs that affected all target
phones and ignore the CVEs patched beforehand. As
seen in Figure 13, the results show that Google Pixel 2
and SONY clearly did the best. In contrast, Xiaomi,
Oppo, and LG are the slowest.
• High-end vs. Low-end. This may be an expected
result as companies tend to devote more resources to
their flagship phones. Figure 14 shows the comparison

between high-end phones (Mi 8, Galaxy S9) and
low-end phones (Mi8 Lite, Galaxy A9 star) in Samsung
and Xiaomi.

• Geographic locations and carriers. We did a small
sample analysis of Samsung and Huawei phones, and
the results show that the same kind of phone (only with
minor adjustments, e.g., for local carriers) in different
regions got patched at the same time in most cases, with
about only 10 percent of the cases being slightly
different.

• Time after release. Android devices are known to
have a relatively short support lifetime, e.g., Google
phones now offer mostly 3 years of security
updates [22]. In practice, most phones (especially
high-end ones) do indeed enjoy at least 2 years of
support. A major exception is Xiaomi’s Redmi 4, a
popular low-end phone popular in China and India. It
was released in 2017 and still had some updates (i.e.,
new firmware images) until March 2019. However,
surprisingly it stopped patching any security
vulnerabilities since early 2018 (less than a year).



6 Causes of Patch Delays

So far, we have quantified the patch delays in the
Android kernel ecosystem mostly in a “blackbox”
manner. However, other than blaming the long chain of
patch propagation, we have not explored the reasons
why the delays are so profound. This can be
illuminating for future improvements in patching
practices.

To achieve this goal, we collect additional
information to help explain the rationale behind the
patching practices by each participating party in the
ecosystem. Specifically, we will analyze the security
bulletins released by more organizations (Qualcomm),
extract more details related to each patch commit, and
reach out for information to the various parties
including Google, Qualcomm, and Samsung.

From an intent point of view, a security patch can be
applied in either of the two ways: knowingly or
unknowingly. For example, an OEM vendor may be
notified by Google about a serious security vulnerability
and knowingly look for patches from upstream. On the
other hand, Google may be blindly applying all
upstream commits from Linux LTS to Android common
branches, not knowing which are important security
patches. Understanding the intent will provide valuable
insight into the patching delays.

Based on this basic framework, we propose the
following hypotheses to explain the slow patching.

(1) Even though the Android kernel ecosystem is
largely open-source, the “knowledge of a security
vulnerability” is often lacking and does not traverse the
ecosystem fast enough, preventing security patches from
being recognized and “knowingly” picked up by those
who are affected (e.g., OEM vendors).

(2) A downstream kernel branch may have drifted
from the upstream (e.g., customization in downstream),
it is not always possible to blindly apply all upstream
commits (conflicts can arise). This may cause some
kernels to lower the frequency to “sync” with upstream
kernel branches, reducing the possibility of
“unknowingly” patching a vulnerability in time.

To validate the hypotheses, we look into detailed
commit log of kernel repositories. As all kernel repos
(i.e., Linux, Qualcomm, and Android common) are
managed by git, we are able to differentiate through the
commit log whether an upstream patch is knowingly
“cherry-picked” or unknowingly “merged” (together
with a stream of commits) into a downstream kernel
branch. They correspond to the command git

cherry-pick <upstream-commit> and git merge

<upstream-commit> respectively. The semantic of
cherry-pick is to pick a specific upstream commit and
port it over to downstream, whereas merge pulls all the
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Figure 16: Case study: CVE-2019-2215

commits since last divergence up to
<upstream-commit>.

Cherry-pick is more flexible as it can patch specific
vulnerabilities without influencing other features.
However, it requires knowledge about which upstream
commit corresponds to an important security patch. In
other words, the downstream must either be notified
about the patch or identify the security issue proactively.

Merge treats all upstream commits equally and does
not differentiate between security patches (severe or not)
and other bug fixes. If done frequently enough, patch
delays can be effectively reduced. The drawback is that
manual resolution is needed when merge conflicts occur.

Similar to merge, fork is sometimes used by a
downstream to become a clone of an upstream. This
way, the downstream automatically inherits all the
patches applied in the upstream at the time of fork. The
drawback is if any customization is made in
downstream, however, it needs to be ported over to the
newly forked branch.

Next, we use a case study of a known CVE to
demonstrate when these patch operations are performed,
and how they can help explain the patch delays.

Case study. In Figure 16, we illustrate the above
patch operations using CVE-2019-2215, a serious
vulnerability that allows rooting [25] which was
originally patched in Linux mainline on 2/1/2018. The
cherry-pick by Linux 4.4 LTS occurred on 10/7/2019
with a long delay. Notably, Google’s Android common
4.4 branch proactively cherry-picked the patch from
Linux mainline on 2/6/2018 (bypassing its direct
upstream). Unfortunately, Google does not appear to be
aware of how serious the vulnerability is, evident by the
extremely late Android security bulletin announcement
on 10/5/2019 (an 18 months delay) and Google’s public
statement admitting them being informed by the project
zero team on 9/26/2019 [24]. It is also worth noting that
no CVE was issued prior to the point. During this time,
Qualcomm was uninformed about the vulnerability
either. Its stable branch kernel.lnx.4.4.r27-rel

did not cherry-pick the patch, leaving the corresponding
Samsung S8-Oreo (Android 8.x) to be vulnerable all



this time [25].
On the other hand, Qualcomm stable branch

kernel.lnx.4.4.r35-rel, representing the same
chipset with an upgraded Android Pie (9.x) had been
merging updates from android-4.4 periodically (merge
is preferred in Qualcomm stable prior to its release),
thus patching the vulnerability on 3/7/2018. Luckily,
when Samsung S8 upgraded its OS from Oreo to Pie, it
forked from this stable branch, inheriting the patch
unknowingly. Unfortunately, other OEM phones using
the same chipset (and staying on Android Oreo) will
remain vulnerable unless they cherry-pick patches
elsewhere. In fact, we have checked that
kernel.lnx.4.4.r27-rel never bothered to apply
the patch until the end of its lifetime on 1/22/2020.

The case study gives us good insight on how the
patching process is like in the ecosystem. Next, we will
generalize the insight by analyzing each step of the
propagation closely and offer takeaways and
suggestions on how to improve the ecosystem.

1. Linux community. Linux vulnerabilities are
always first patched in Linux mainline and then
cherry-picked by downstream branches. Since Linux
stable/LTS branches aim to operate as reliably and
stably as possible, there is a formal set of rules guiding
the cherry-pick of upstream patches [3], e.g., “it cannot
be bigger than 100 lines, with context; it must fix a real
bug that bothers people, ... a real security issue”.

Thanks to the close collaboration between Linux
mainline and stable maintainers and the fact they belong
to the same community, patch delays between the two
are generally small. The outlier 3.18.y was noticeably
slower than others. It turns out that other than the fact
that it is an older branch, it was never meant to be an
LTS branch. However, due to popular demand from
Android kernels which decide to fork from 3.18.y, it
remains actively maintained for much longer than
originally intended. This may partially explain the slow
cherry-pick of upstream patches. In other LTS branches,
patch delays are generally small despite a long tail.

Unfortunately, due to the general principle followed
by Linux that “a bug is a bug” [6], oftentimes the Linux
community does not realize whether a bug is truly an
exploitable security bug until much later. By
convention, security patches in Linux are not labeled as
such in the public commit logs [23]. This creates a
situation where Linux LTS maintainers are not even
aware of the impact of those vulnerabilities. As
supporting evidence shown in Figure 15,
counterintuitively, CVEs that are (later) rated as critical
and high by Google turn out to take noticeably longer
time for Linux to patch, indicating the lack of
knowledge by Linux. In fact, we find 17 out of 37
patches for critical vulnerabilities were initially missed

Propagation step 3.18 4.4 4.9 4.14
LTS ->Android 63/106 74/105 70/74 30/31

Android ->Qualcomm 26/95 93/109 72/74 61/66

Table 4: The ratio of CVEs patched by merge

in the initial “train” of cherry-picked patches, as they
appear “out-of-order” with respect to other
cherry-picked patches.

Even when Linux is aware of a security vulnerability,
e.g., notified by an external party via the private
vulnerability reporting mailing list,
security@kernel.org, this knowledge may or may
not propagate internally to Linux LTS maintainers. In
addition, as Linux’s commits are often intentionally
opaque [23], the knowledge is almost definitely lost
outside of Linux, preventing downstream kernels from
cherry-picking the corresponding patches timely. The
only publicly available mechanism to document such
knowledge is the CVE database. However, it is known
to be incomplete and takes a long time to assign a CVE
number and to update the entry [6].

Therefore, a better mechanism to track security issues
is needed. Specifically, for the vulnerabilities that are
reported to Linux through its private mailing list, we
argue that it is a big missed opportunity where Linux
has already triaged the bug and can clearly label the
corresponding fixes as security-critical to help the
downstream kernel (this is much more efficient than the
CVE mechanism). For other bug fixes, we call for better
tools to automatically reason about the nature of a bug
and determine if it has serious security implications — a
recent tool has been developed by Wu et al. [36].

2. Google. Android common kernels are forked from
Linux stable/LTS initially and then add Android-specific
changes on top (sometimes referred to as “out-of-tree”
code). Over the years, Google has been upstreaming
much of its code to Linux mainline and reducing such
“out-of-tree” code [28]. This allows Android common
kernels to merge patches from Linux LTS with a delay
of 0 day, a week, to a month sometimes, and only
occasionally cherry-pick from Linux mainline directly
for important security patches. This is evident in Table 4
which shows the exact numbers of patches merged vs.
cherry-picked. Note that 3.18 and 4.4 are exceptions as
most of the patches in the beginning were cherry-picked
from Linux mainline where the delays are less
predictable (some are creating negative delays
compared to Linux LST).

In addition to keeping its own Android common
kernels up-to-date, Google has another important
responsibility to notify OEM vendors about security
patches. While the exact notification date is mostly not
made public, according to Google, it typically goes out



100 101 102 103

(ASB release - earliest Android common
 patch) in Days(Log-Scaled)

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

All moderate
All high
All critical
Cherry-pick moderate
Cherry-pick high
Cherry-pick critical

Figure 17: Notification delays of
Linux CVEs (by severity)
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Figure 18: Notification delays of
Qualcomm CVEs (by severity)
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Figure 19: Post-notification delays of
cherry-picked patches (by severity)

at least a month prior to the information appearing on
the security bulletin [2]. Surprisingly, as Figure 17
shows, in the majority of the CVEs, it takes anywhere
from 100 to 500 days for the details to appear on the
security bulletin (note that the actual notification should
be at least 30 days earlier). In the extreme 20% of the
CVEs, it takes 500 days or more. We believe this is due
to the fact that Google is not really aware of which of
the merged patches are security-critical — indeed the
delays shown in the figure do not appear correlated with
the severity of vulnerabilities.

In the same figure, we also show the notification
delays of CVEs where Google knowingly cherry-picked
important security patches. Indeed, the delays are
noticeably smaller. This indicates the lack of knowledge
is the culprit again, supporting our hypotheses. There is
still not too much difference based on vulnerability
severity levels. After finishing the analysis, we also
confirmed with Google that this is expected as their
pipeline does not distinguish severity levels by design.
Every month, all issues rated above the threshold and
known to Google, e.g., moderate and above, are worked
on together in a batch. Exceptions occur only under
extraordinary circumstances where disclosure of a
serious vulnerability is imminent.

In general, for vulnerabilities that originate in Linux,
better and more automated vulnerability triage seems to
be a key capability that can benefit Google. Manually
sifting through merged upstream commits and
narrowing down to the handful that eventually appears
on the Android security bulletin can be prohibitively
expensive. Alternatively, if Linux has done the triage
already, Google can benefit directly from the
knowledge, e.g., through tighter collaboration.

For vulnerabilities that originate in Qualcomm,
Google should have the first-hand knowledge already —
they are almost always informed by either Qualcomm or
external parties about the specifics. In such cases, the

notification to OEM vendors should be as swiftly as
possible, which unfortunately is not the case as we will
discuss later in the section.

3. Qualcomm. Qualcomm maintains many more
branches compared to Linux and Google and the
overhead of patch tracking and management goes up.
However, we find its mainline branches are maintained
in a similar fashion to Android common. As seen in
Table 4, mainlines primarily merge commits from
Android common and only occasionally cherry-picks
patches from Linux directly. One difference is the
merge frequency is generally lower than that of Android
common, resulting in longer delays as shown in
Figure 7.

On the other hand, Qualcomm stable branches are
maintained differently. After they are forked from a
mainline and labeled as “release”, only cherry-picks are
performed. This creates the same paradox that even
though Qualcomm mainlines merge patches relatively
timely, the developers are not aware of the
security-critical nature of these patches. As a result, it
can take Qualcomm stables a long time to cherry-pick
the patches. Indeed, Figure 8 illustrates the dramatic
delay. Shockingly enough, after we reach out to
Qualcomm about the delays, their response indicates
that this is because stable branches often receive
Linux-specific patches only when customers ask for
them explicitly.

In principle, even if Qualcomm is interested in
proactively patching Linux vulnerabilities, the
knowledge gap needs to be bridged by Linux (e.g.,
labeling the security nature of a patch). However,
Qualcomm can do its part by merging more patches to
stable branches without distinguishing their nature,
despite the fact that Qualcomm stables are designed to
include bug fixes only. This is because Qualcomm
stables are already based on Android common branches
and indirectly from Linux stable/LTS, which commit



necessary bug fixes only (no new features).
Interestingly, we observe two recent stable branches
based on Android 10, namely
kernel.lnx.4.9.r34-rel and
kernel.lnx.4.9.r30-rel in Qualcomm follow this
very strategy.

In contrast, for vulnerabilities that originate in
Qualcomm kernels, we know that they are patched
much more timely in stable branches (see Figure 8). In
such cases, Qualcomm is likely already aware of the
nature of the bugs — most are described as externally
reported or internally discovered during auditing. Thus
Qualcomm should be able to notify OEM vendors as
soon as patches are available. Unfortunately, after
collecting data from Qualcomm’s security bulletin
(released monthly since Sep 2017), we found that the
delay between the earliest patch and its own notification
date is not ideal (median delay: 63 days, mean delay:
130 days), as shown in Figure 18 (surprisingly
indiscriminative of the vulnerability severity again).
Note that we combine high/critical CVEs into one line
here because there are only three critical Qualcomm
kernel CVEs since the inception of Qualcomm’s
security bulletin.

After confirming with Qualcomm, we know that the
customer notification is sent out (to all OEM vendors)
only after fixes have been widely propagated on affected
branches. However, we believe the notification process
can be more agile — a subset of OEM vendors can be
notified as soon as their corresponding branches have
the patches ready. Even better, oftentimes the patches
are not really different across branches, Qualcomm can
simply notify all customers as soon as the earliest patch
is ready and OEM vendors can make an early decision
(e.g., testing the patch independently before applying).
This way, the major bottleneck of late notification can
be mitigated.

According to the same figure, there is another delay
of two to three months before Google publishes these
CVEs on its security bulletin. Since most OEM vendors
follow Google’s monthly schedule to update security
patch level, OEM patches will be unnecessarily delayed.

4. OEM phones. To understand how patching is
performed on OEM kernels, we refer to the Pixel source
branches as well as an Oneplus repo that happened to
contain the complete commit history. We observe that
these kernels cherry-pick patches from Qualcomm
(either mainline or stable) and even Linux sometimes.
In addition, when OEM vendors decide to upgrade the
Android OS (e.g., Android Oreo to Android Pie), they
usually abandon the old branch and develop another
stable branch (forking from upstream) that corresponds
to the new Android OS (as the case study about
Samsung S8 showed). We can infer that other OEM

vendors follow the same strategy of (1) cherry-picking
instead of merging, and (2) forking when upgrading.
This is because (1) the firmware images often skip
upstream patches (so it is unlikely performing git

merge), and (2) OS upgrades always happen together
with the kernel version updates, which is also the case
with Qualcomm stable branches — OS upgrades lead to
a new stable branch with an advanced kernel version. In
addition, we always observe a large number of kernel
patches applied when the firmware is upgraded to a new
Android OS.

Specifically, depending on the exact phone model,
30% to 75% of CVEs can be patched through forking a
new branch from upstream. This is not a healthy
number because Android OS upgrades usually happen
on a yearly basis and not to mention that there are often
additional delays for these upgrades to reach user
devices (e.g., carrier delays). Clearly, more patches
should have been cherry-picked in between upgrades.

For the cherry-picked patches, we consider them
timely if they are applied within a reasonable amount of
time after Google or Qualcomm notify the OEMs,
which is typically expected to be a month or two.
Unfortunately, OEM vendors are often significantly
behind the schedule. As Figure 19 shows, 80% of the
Qualcomm CVEs take OEMs 100 days or more to
deploy corresponding patches. This is likely because
OEM vendors ignore Qualcomm’s notifications and
prefer to follow the monthly updated security patch
level set by Google. We contacted Samsung and
confirmed that OEMs are bound to follow Android’s
monthly bulletin while no such strict requirements exist
for Qualcomm. This is reflected in the figure where
more than 50% of the CVEs take OEMs less than a
month (sometimes even beforehand) to patch after the
Android security bulletin publication (which is within
the expectations [13]). As we can see, Google’s
notification plays a huge role in getting OEMs to patch.

We note that there is a small fraction of patches
(roughly 5%) delayed for 200 days or more after
Google’s security bulletin is published. This is not only
due to slow and infrequent security updates by some
devices but also occasionally skipped CVEs (out of the
ones published together in a month). For example, we
find that Samsung S8 has skipped nothing but
CVE-2018-13900 from Google’s Feb 2019’s security
bulletin, which interestingly got patched eventually in
2020. Finally, from Figure 19, we do not find significant
correlation between the severity of vulnerabilities and
timeliness of patches being cherry-picked by OEMs.
Note that the number of critical cherry-picked patches
by OEMs is very limited, especially for some new
phones, thus we combine high and critical ones into a
single line. In fact, CVE-2018-13900 is a high severity



vulnerability yet skipped by Samsung S8.
To improve the situation, OEM vendors should

obviously react more timely to the earliest notification,
e.g., Qualcomm. Furthermore, similar to what we
suggest for Qualcomm, OEM vendors can consider
merging patches directly from upstream instead of
cherry-picking them. We also hope that high-end and
low-end phones can be treated equally, as we show
low-end phones tend to receive patches more slowly in
Figure 14. At the end of the day, we believe a better and
more automated patching/testing process will help.

Summary. Overall, the analysis supports our
hypothesis and we propose three general areas that need
improvement.

More efficient triage systems. The triage process of
security vulnerabilities today is largely manual. This is
evident in the case study where the initial bug fix made
in Linux mainline was never treated seriously enough
by the rest of the ecosystem (Linux LTS failed to
cherry-pick it also). Better automated reasoning tools
(e.g., [36]) can assist the developers in identifying
security-critical bugs and take actions accordingly.

More efficient knowledge propagation. Unfortunately,
even when the knowledge of an important security
vulnerability does become available in one party, it
either does not have a good mechanism to propagate the
information (e.g., Linux), or propagate the information
in a delayed manner (e.g., notification by Google and
Qualcomm). In addition, sometimes it is beneficial to
propagate the knowledge in the reverse direction (e.g.,
some patches shown to be applied in Google before
Linux LTS). Ideally, this process should be more
automated to reduce delay.

Cleanly separate the changes made in downstreams.
Current patching practices in downstreams largely rely
on cherry-picking, i.e., Linux LTS, Qualcomm stables,
and OEMs. If a downstream kernel can cleanly separate
its customization code from the upstream, or even
better, upstream its customization (as is the case with
Google[28]), the responsibility of patching upstream
vulnerabilities can be completely automated with
merging, i.e., Android common and Qualcomm
mainlines. A downstream kernel can simply merge
automatically and fix security issues unknowingly.

7 Discussion

Unpatched kernels. By design, patch presence test is
unable to equate the absence of patches with the target
“being vulnerable”. Throughout our measurements, we
observe many cases where the downstream kernels
never apply patches from upstream. However, this could
simply mean that the downstream kernel is not affected
by the upstream vulnerability, e.g., due to customization

of the vulnerable function. This is why we focus on the
patched cases only, because it implies the downstream
kernels are affected.
Further delays after the OEM patches. Our patch
propagation measurement stops at the kernel
compilation (build) dates. However, in practice, there
are additional delays before the OEM updates can arrive
at a user device. They include carrier certification delays
(for carrier-locked phones), and users intentionally
delaying the firmware update even if it is already
available through OTA. Unfortunately, such delays are
hard to quantify and we consider them out of scope. To
get a basic sense of carrier certification delays, we
manage to find the LG V30/Samsung S7/Samsung S8
on T-Mobile websites and SamsungS7/SamsungS8 on
ATT websites that appear to publish the firmware
release date. The average delay between built and
release is about 20 days. To draw any meaningful
conclusions though, a large-scale analysis needs to be
done across more devices and carriers.
Chipset vendors other than Qualcomm. In addition to
Qualcomm, other major SoC vendors include
MediaTek, Kirin, and Exynos. Unfortunately, none of
these vendors provides the complete git repositories for
their recent chipsets. In addition, the CVEs specific to
Kirin and Exynos chipsets are published only on
Huawei’s and Samsung’s official websites but no links
exist to the corresponding patches. Together, they
represent a hurdle for any external party to track their
patches. We suspect reverse engineering on the
firmware images will be the only way to analyze the
presence and absence of patches.

8 Related Work
Code similarity at the source and binary level. To
conduct our measurement we need the ability to
accurately test the patch presence at both source level
(e.g., the source code of the phone kernel is released)
and binary level (e.g., only ROMs are available for the
target phone). There exist a large body of work aiming
to compute the source/binary code similarity (e.g., to
find similar functions as a given vulnerable one), using a
variety of source and binary level
features [14, 27, 26, 34, 41].

In theory, these work can be used to test the patch
presence by computing a target function’s similarity to
the patched/unpatched functions). Unfortunately,
similarity-based approaches are fundamentally fuzzy
and not suitable to capture the essence of a security
patch which often makes only very small changes to
patched functions and can still look similar to the
unpatched version of the function. Tuning the
similarity-based approach for patch presence test is an
interesting but orthogonal problem.



Binary patch presence test. FIBER [42] is a
state-of-art open-source tool to test the patch presence in
binaries with the aid of the fine-grained source level
patch information. It generates binary signatures that
accurately capture the syntax and semantic information
of the patch change sites, and then matches them in the
target binary. It suits our needs perfectly and therefore
we leverage and build on top of FIBER to test the patch
presence for over 600 Android ROMs. To ensure that it
works well in our large-scale measurement, we enhance
the original FIBER to overcome several of its technical
weaknesses as detailed in §4.3.
Android security patch investigation. Farhang et
al. [19] have recently conducted a measurement on
Android security patches, including both user and kernel
components, with some minor overlap with this paper.
In particular, they also analyzed the delay from the
patch date (linked from the security bulletin which we
now know is often not the earliest date) to the release
date on the bulletin and observed a large delay.
However, this represents only a small part of the picture
of the end-to-end patch propagation in the ecosystem all
the way from the upstream Linux to the end Android
devices. Specifically, they do not attempt to locate
patches in the source or binary at all. Thus they cannot
find the bottleneck of patch delay. On the other hand,
we not only showed where the bottleneck is but also
explained why they exist with actionable insights and
takeaways. More importantly, we also give suggestions
on how to improve the patch propagation in the
ecosystem.
Patch and vulnerability lifecycle analysis. There exist
a number of measurement studies focusing on various
aspects of patch propagation in open-source software.
Li et al. [31], Shahzad et al. [40] and Frei et al. [20]
performed large-scale measurements regarding the
vulnerability lifecycle and the patching timeliness,
based on publicly available information collected from
data sources like CVE databases [4] and open-source
repositories. Some of them focus on specific
open-source projects, like Farhang et al. [19] focusing
on Android and Ozment et al. [32] targeting FreeBSD.
No analysis has been dedicated to the Android kernel
ecosystem which involves the analysis of multiple
parties in depth and the analysis of source and binary
kernels.

9 Conclusion

In this paper, we delved deep into the Android kernel
patch ecosystem, revealing the relationship among
different parties as well as the bottleneck in patch
propagation. This represents a first data point to
measure such a huge, decentralized, fragmented, and yet

collaborative project. We also analyze that the study is
worthwhile in identifying deficiencies and opportunities
to better manage such a project in the future.
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